
MATH 303 – Measures and Integration
Homework 10

Please upload a pdf of your solutions by 23:59 on Monday, December 2. The assignment will be
graded out of 16 points (8 for each problem). One problem will be checked for completeness and
the other will be graded on correctness and quality. More details on grading, as well as guidelines
for mathematical writing, can be found on Moodle.

Problem 1. Let (X,B, µ) be a measure space. Suppose f : X → C is a measurable function, and
f ∈ Lp0(µ) for some p0 ∈ [1,∞) and f ∈ L∞(µ). Show that ∥f∥∞ = limp→∞ ∥f∥p.

Solution: If ∥f∥∞ = 0, then f = 0 a.e., so ∥f∥p = 0 for every p ∈ [1,∞), and we are done.
Suppose ∥f∥∞ > 0. We will show

lim sup
p→∞

∥f∥p ≤ ∥f∥∞ ≤ lim inf
p→∞

∥f∥p .

Let ε ∈ (0, ∥f∥∞), and consider the set E = {|f | > ∥f∥∞ − ε}. Then∫
X
|f |p dµ ≥

∫
E
(∥f∥∞ − ε)p dµ = (∥f∥∞ − ε)pµ(E).

Taking p = p0, we see that µ(E) < ∞. Moreover, since ε > 0, we have µ(E) > 0 by the
definition of the L∞ norm. Therefore, µ(E)t → 1 as t → 0, so

lim inf
p→∞

∥f∥p ≥ lim
p→∞

(∥f∥∞ − ε)µ(E)1/p = ∥f∥∞ − ε.

Letting ε → 0, we get lim infp→∞ ∥f∥p ≥ ∥f∥∞.
On the other hand, since |f | ≤ ∥f∥∞ a.e.,∫

X
|f |p dµ =

∫
X
|f |p−p0 |f |p0 dµ ≤ ∥f∥p−p0

∞

∫
X
|f |p0 dµ = ∥f∥p−p0

∞ ∥f∥p0p0 .

Hence, taking pth roots and then taking a limit,

lim sup
p→∞

∥f∥p ≤ lim
p→∞

∥f∥1−p0/p
∞ ∥f∥p0/pp0

= ∥f∥∞ ,

where in the last step we have used that p0/p → 0 and both of the quantities ∥f∥∞ and ∥f∥p0
are finite.

Problem 2.

(a) Let (X,B, µ) be a probability space. Let f : X → C be a measurable function. Show that for
any 1 ≤ p < q ≤ ∞, one has

∥f∥p ≤ ∥f∥q .

(b) We denote by ℓp(N) the Lp space associated to N with the counting measure. That is, for
1 ≤ p < ∞, ℓp(N) is the space of sequences a = (an)n∈N with

∑∞
n=1 |an|p < ∞, and the norm

on the space is given by ∥a∥p = (
∑∞

n=1 |an|p)
1/p. The space ℓ∞(N) is the space of bounded

sequences with norm ∥a∥∞ = supn∈N |an|. Show that for any 1 ≤ p < q ≤ ∞, one has

∥a∥p ≥ ∥a∥q



Solution: (a) If q = ∞, then |f | ≤ ∥f∥∞ a.e., so
(∫

X |f |p dµ
)1/p ≤ (∫X ∥f∥p∞ dµ

)1/p
= ∥f∥∞.

Suppose q < ∞. The function x 7→ xq/p is convex on [0,∞). Therefore, by Jensen’s
inequality, ∫

X
|f |q dµ =

∫
X
(|f |p)q/p dµ ≥

(∫
X
|f |p dµ

)q/p

.

Taking the qth root of both sides gives the desired inequality.

(b) Suppose q = ∞, and let c < ∥a∥∞ be arbitrary. Since ∥a∥∞ = supn∈N |an|, let k ∈ N
such that |ak| > c. Then

∥a∥p =

( ∞∑
n=1

|an|p
)1/p

≥ (|ak|p)1/p = |ak| > c.

Since c < ∥a∥∞ was arbitrary, this proves ∥a∥p ≥ ∥a∥∞.
Now suppose q < ∞. We give two different methods of proof.

Method 1: Induction. We will show(
N∑

n=1

|an|q
)1/q

≤

(
N∑

n=1

|an|p
)1/p

(1)

for every N ∈ N. The desired inequality then follows by taking a limit as N → ∞.
For N = 1, both sides of (1) are equal to |a1|. Suppose (1) holds for some N . Then

N+1∑
n=1

|an|q =
N∑

n=1

|an|q + |aN+1|q ≤

(
N∑

n=1

|an|p
)q/p

+ (|aN+1|p)q/p
(∗)
≤

(
N+1∑
n=1

|an|p
)q/p

,

and the desired inequality follows by taking qth roots.
To justify the step (∗), let us prove a general inequality of which it is a special case: if

t > 1 and x, y ≥ 0, then xt + yt ≤ (x + y)t. If x = 0, then xt + yt = yt = (x + y)t. Suppose
x > 0, and let u = y/x. Then xt + yt = xt(1 + ut) and (x + y)t = xt(1 + u)t, so it suffices
to show 1 + ut ≤ (1 + u)t. Let f(u) = (1 + u)t − 1 − ut. Then f(u) = 0 and its derivative
f ′(u) = t(1+u)t−1−tut−1 = t

(
(1 + u)t−1 − ut−1

)
is positive, so f is strictly increasing, whence

f(u) > 0 for u > 0. That is, 1 + ut ≤ (1 + u)t as claimed.

Method 2: Rescaling. If ∥a∥q = 0, there is nothing to prove, so assume ∥a∥q > 0. Let
u = a

∥a∥q
. Then

∑∞
n=1 |un|q = 1, so |un| ≤ 1 for every n ∈ N. Therefore, |un|p ≥ |un|q for

n ∈ N. Summing over n, we have

∥a∥p
∥a∥q

= ∥u∥p =

( ∞∑
n=1

|un|p
)1/p

≥

( ∞∑
n=1

|un|q
)1/p

= 1,

so ∥a∥p ≥ ∥a∥q.


