MATH 303 — Measures and Integration
Homework 10

Please upload a pdf of your solutions by 23:59 on Monday, December 2. The assignment will be
graded out of 16 points (8 for each problem). One problem will be checked for completeness and

the other will be graded on correctness and quality. More details on grading, as well as guidelines
for mathematical writing, can be found on Moodle.

Problem 1. Let (X, B, 1) be a measure space. Suppose f : X — C is a measurable function, and
f € LPo(p) for some py € [1,00) and f € L>(u). Show that [|f||,, = limpyeo || f]],-

Solution: If [|f|,, = 0, then f = 0 a.e., so | f|[, = 0 for every p € [1,00), and we are done.
Suppose | f|,, > 0. We will show

| S
timsup 1], < 1] < linint |1,

Let € € (0, f]l,), and consider the set E = {|f| > || f||,, —¢}. Then

/ e duZ/(HfHoo—é)p dp = ([ flloo = )P 1(E).
X E

Taking p = po, we see that p(E) < oco. Moreover, since € > 0, we have u(E) > 0 by the
definition of the L> norm. Therefore, u(E)! — 1 as t — 0, so

. . . - ]_/p: -
liminf || f]l, > lim ([f]lo — €)u(E) 1 Flloo =<

Letting e — 0, we get liminf, oo || f][, > | fll -
On the other hand, since |f| < || f|| a-e.,
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Hence, taking pth roots and then taking a limit,

m s < I l=po/p || f||Po/P —
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where in the last step we have used that po/p — 0 and both of the quantities || f||,, and [|f|,,
are finite.

Problem 2.

(a) Let (X, B, ) be a probability space. Let f: X — C be a measurable function. Show that for
any 1 < p < q < oo, one has

11, < 1A, -

(b) We denote by ¢P(N) the LP space associated to N with the counting measure. That is, for
1 < p < oo, P(N) is the space of sequences @ = (an)neny with Y o0 | |an[P < 0o, and the norm
on the space is given by |lal|, = (3°72; |an|p)1/p. The space ¢>°(N) is the space of bounded
sequences with norm ||a|| ., = sup,,cy |an|. Show that for any 1 < p < ¢ < oo, one has

lall, = [lall,
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Solution: (a) If ¢ = oc, then || < |[fll,o ae., so ([ 117 di) /" < (f IF1% die)"” = |17l
Suppose ¢ < co. The function z — z%P is convex on [0,00). Therefore, by Jensen’s

inequality,
q/p
o1 an= [ ey anz ([ 1oran)
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Taking the gth root of both sides gives the desired inequality.

(b) Suppose ¢ = o0, and let ¢ < ||a||, be arbitrary. Since ||a|| ., = sup,cy |an|, let £ € N
such that |ag| > c¢. Then

[ee) 1/p
lall, = (Z lan|p) > (|lag[P)"/? = |ag| > e

n=1

Since ¢ < ||al|,, was arbitrary, this proves |[al|, > [[al|.
Now suppose g < co. We give two different methods of proof.

Method 1: Induction. We will show

N /g N 1/p
(Z ‘an‘q> < <Z ’an|p> (1)

n=1 n=1

for every N € N. The desired inequality then follows by taking a limit as N — oo.
For N =1, both sides of are equal to |aj|. Suppose holds for some N. Then

N+1 N

N a/p () [NHL a/p
z|an|q:z|an|q+ramqs(zw) +<\aN+1|p>q/ps(z|an|p) ,
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and the desired inequality follows by taking gth roots.

To justify the step (x), let us prove a general inequality of which it is a special case: if
t>1and z,y > 0, then 2! + ¢y* < (z +y)t. If x = 0, then 2! + ¢y* = y* = (z + y)!. Suppose
x > 0, and let u = y/x. Then 2! + ' = 2!(1 + u?) and (x + y)! = 2%(1 + u)?, so it suffices
to show 1 +u! < (1 +u)t. Let f(u) = (1 +u)! —1 —wu'. Then f(u) = 0 and its derivative
f(w) =t(14u) "t —tu~t = ¢ ((1+ )~ — u'"1) is positive, so f is strictly increasing, whence
f(u) >0 for u > 0. That is, 1 + u® < (1 4+ u) as claimed.

Method 2: Rescaling. If [|a|[, = 0, there is nothing to prove, so assume ||a||, > 0. Let
u = ﬁ Then > 7 |up|? = 1, so |uy| < 1 for every n € N. Therefore, |u,|P > |u,|? for
q

n € N. Summing over n, we have

Ha’”p 00 ) 1/p [e’e) . 1/p

so [lall, > llall,-




